Ferraris, Fuess \& Joswig, 1986; Ardon \& Bino, 1987).

From X-ray investigations it is well known that among the sulfates and selenates of natrochalcite type, the hydrogen-bond lengths vary considerably: $\mathrm{O}(\mathrm{H}) \cdots \mathrm{O}(\mathrm{H})=2.44$ to $2.61 \AA, \mathrm{O}(\mathrm{H}) \cdots \mathrm{O}(2)=2.70$ to $3 \cdot 11 \AA$ (Giester \& Zemann, 1987, 1988; Giester, 1989). Neutron work on further members would provide information on the influence of the chemistry and stereochemistry of the compounds on the geometry of the hydrogen-bond system: a problem of considerable interest. Such investigations have, however, to await the growth of crystals of suitable size.

This work was supported by the Fonds zur Förderung der wissenschaftlichen Forschung, Austria, Project No. P5521.

References

Andersen, P., Nielsen, K. M. \& Petersen, A. (1984). Acta Chem. Scand. Ser. A, 38, 593-601.

Ardon, A. \& Bino, A. (1987). Struct. Bonding (Berlin), 65, 1-28.
Chiari, G. \& Ferraris, G. (1982). Acta Cryst. B38, 2331-2341.
Emsley, J. (1980). Chem. Soc. Rev. 9, 91-124.
Emsley, J., Jones, D. J. \& Lucas, J. (1981). Rev. Inorg. Chem. 3, 105-140.
Ferraris, G., Fuess, H. \& Joswig, W. (1986). Acta Cryst. B42, 253-258.
Finger, L. E. \& Prince, E. (1975). RFinE4. A System of Fortran IV Computer Programs for Crystal Structure Computations. National Institute of Standards and Technology, Washington, USA.
Giester, G. (1989). Z. Kristallogr. 187, 239-247.
Giester, G. \& Zemann, J. (1987). Z. Kristallogr. 179, 431-442.
Giester, G. \& Zemann, J. (1988). Z. Kristallogr. 185, 500.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 270-272. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Mootz, D. \& Bartmann, K. (1988). Angew. Chem. 100, 424-425.
Olovsson, I. \& Jönsson, P.-G. (1976). The Hydrogen Bond, Vol. II, edited by P. Schuster, G. Zundel, \& C. Sandorfy, pp. 393-456. Amsterdam, New York, Oxford: North-Holland.
Rumanova, I. M. \& Volodina, G. F. (1958). Dokl. Akad. Nauk SSSR, 123, 78-81.
Tardy, M. \& Brégeault, J.-M. (1974). Bull. Soc. Chim. Fr. pp. 1866-1870.
Zemann, J. (1986). Mitt. Oesterr. Mineral. Ges. 131, 129-132.

Acta Cryst. (1990). C46, 177-179

Structure of the Trivanadate $\mathrm{TlV}_{3} \mathrm{O}_{8}$

By R. Benchrifa, M. Leblanc and R. De Pape
Laboratoire des fluorures, UA CNRS $n^{\circ} 449$, Faculté des sciences, 72017 Le Mans CEDEX, France

(Received 31 March 1989; accepted 22 May 1989)

Abstract

Thallium trivanadate, $M_{r}=485 \cdot 2$, monoclinic, $\quad P 2_{1} / m, \quad a=7.780(2), \quad b=8.423$ (3),$\quad c=$ 4.993 (1) $\AA, \beta=96.48$ (2) ${ }^{\circ}, V=325 \cdot 2 \AA^{3}, Z=2, D_{x}$ $=4.957 \mathrm{~g} \mathrm{~cm}^{-3}, \quad$ Мo $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=$ $2.90 \mathrm{~cm}^{-1}, F(000)=428, T=293 \mathrm{~K}, R=0.049$ for 2032 unique observed reflections. Full isotypy with the known $\mathrm{CsV}_{3} \mathrm{O}_{8}$ structure is found, but e.s.d. values are about four times better. The structure is built from $\mathrm{V}(2) \mathrm{O}_{5}$ square-pyramidal units; these entities share a common edge in order to give condensed $\mathrm{V}_{2} \mathrm{O}_{8}^{6-}$ polyanions. Their corner sharing leads to infinite chains $\left(\mathrm{V}_{2} \mathrm{O}_{7}^{4-}\right)_{\infty}$ lying along the b axis. The $\mathrm{V}(1)$ atoms occupy an octahedral coordination between these chains; the result is a packing of corrugated sheets $\left(\mathrm{V}_{3} \mathrm{O}_{8}^{-}\right)_{\infty}$ parallel to the (100) plane.

Introduction. The hydrothermal treatment of a mixture of $\mathrm{V}_{2} \mathrm{O}_{5}+\mathrm{V}_{2} \mathrm{O}_{3}+\mathrm{Tl}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$ (mole ratio $0 \cdot 5 / 0 \cdot 12 / 0 \cdot 38 / 99$) at 473 K during 24 h in a sealed glass tube leads to three phases: (a) microcrystalline

0108-2701/90/020177-03\$03.00
tetragonal phase $\mathrm{Tl}_{2} \mathrm{~V}^{\mathrm{IV}} \mathrm{V}_{2}^{\mathrm{V}} \mathrm{O}_{8}$ (Tudo \& Jolibois, 1971; Théobald \& Théobald, 1984); (b) colorless needles of the metavanadate TlVO_{3} (Ganne, Piffard \& Tournoux, 1974; Howard \& Evans, 1960); (c) red-orange crystals. The crystallographic characterization of the last crystals allowed us to deduce first the composition $\mathrm{TlV}_{3} \mathrm{O}_{8}$ and second their full isotypy with the homologous $\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$ and NH_{4} compounds (Kelmers, 1961; Howard, Evans \& Block, 1966). This analogy was suggested on the grounds of powder data (Tudo \& Jolibois, 1971); these last authors obtained $\mathrm{TlV}_{2} \mathrm{O}_{8}$ as a red-orange powder by reaction at 643 K of a mixture of $\mathrm{Tl}_{2} \mathrm{CO}_{3}$ and $3 \mathrm{~V}_{2} \mathrm{O}_{5}$ under inert atmosphere; we show that their published powder data are in accordance with the calculated intensities obtained from our single-crystal study.

Experimental. [001]-elongated prismatic crystal with $\pm(010), \pm(410)$ lateral faces; $0.15 \times 0.07 \times 0.06 \mathrm{~mm}$. Siemens AED2 four-circle diffractometer (graphite monochromator); 26 reflections used for measuring
© 1990 International Union of Crystallography
lattice parameters, $15 \leq \theta \leq 16^{\circ} ; \omega / 2 \theta$ scan, angular range $4.8 \leq 2 \theta \leq 90^{\circ}$, explored reciprocal space: $0 \leq$ $h \leq 15 ; 0 \leq k \leq 16 ;-10 \leq l \leq 10$. Absorption correction by the Gaussian method: $A_{\text {max }}=0.264 ; A_{\text {min }}=$ $0 \cdot 114$; number of measured reflections: 2810; number of independent observed reflections [$\sigma(I) / I \leq 0.33$] used in the refinements: 2032. Three standard reflections (104, 142, $\overline{1} 21$), no intensity variation. Atomic scattering factors $f, f^{\prime}, f^{\prime \prime}$ from International Tables for X-ray Crystallography (1974) for $\mathrm{Tl}^{+}, \mathrm{V}^{5+}, \mathrm{O}^{2-}$. Refinements with SHELX 76 (Sheldrick, 1976). Starting set of coordinates from $\mathrm{CsV}_{3} \mathrm{O}_{8}$ (Howard et al., 1966). The residuals drop to $R=0.049$ and $w R=$ 0.057 with anisotropic thermal parameters for all the atoms.* Weights are calculated from $w=K /\left[\sigma^{2}(F)+\right.$ $\left.|G| F^{2}\right]$, with $|G|=0.00181$ and the scale factor K $=1.755 ; \sum w\left(F_{o}-F_{c}\right)^{2}$ minimized, max. $\Delta / \sigma 0.03$; secondary-extinction factor $x=4.9 \times 10^{-7}$, max. and \min. heights in the final difference Fourier map: +5.3 and $-3.9 \mathrm{e} \AA^{-3}$, the maximum being at $0.68 \AA$ from the Tl^{+}ion.

Discussion. Table 1 presents the final atomic parameters and Fig. 1 shows a perspective view of the structure. It is built from corrugated sheets packed along the a axis with Tl^{+}ions possessing an irregular 12 -fold coordination between the sheets. The coordination of the $\mathrm{V}(1)$ atom is a strongly distorted octahedron [distances 1.601 (5) to 2.287 (4) \AA], but the $V(2)$ environment is better described as a squarepyramidal coordination [five O atoms between $1 \cdot 605$ (3) and $2 \cdot 005$ (3) $\AA ;$ presents selected bond lengths in $\mathrm{TlV}_{3} \mathrm{O}_{8}$.
An important feature of the structure is the very short distance between the next nearest neighbor O(3) atoms, $2 \cdot 362$ (4) \AA, nearly as low as the corresponding value encountered in the $\mathrm{CsV}_{3} \mathrm{O}_{8}$ structure: $2 \cdot 30$ (2) \AA (Howard et al., 1966); we note that each of the $\mathrm{O}(3)$ atoms has three vanadium neighbors $[\mathrm{V}(1)$ at 1.837 (3) $\AA ; \mathrm{V}(2)$ at 2.005 (3) \AA; and $\mathrm{V}(2)$ at 1.955 (3) $\AA]$, so the $\mathrm{O}\left(3^{\mathrm{ii})}-\mathrm{O}(3)\right.$ pair is subjected to a strong positive electrostatic potential from four V^{5+} ions, allowing an uncommon shortening of the $\mathrm{O}\left(3^{\text {ii }}\right)-\mathrm{O}(3)$ distance (Fig. 1).

The actual atomic positions are found to conform very well to the valence bond theory; by using the parameters from Brown \& Shannon (1973), the calculated ionic valences are very close to the formal charges: $\mathrm{V}(1): 5.05 ; \mathrm{V}(2): 4.95 ; \mathrm{O}(1): 1 \cdot 91 ; \mathrm{O}(2): 2 \cdot 18$; $\mathrm{O}(3): 2 \cdot 08 ; \mathrm{O}(4): 1 \cdot 96 ; \mathrm{O}(5): 1 \cdot 88$ v.u.

[^0]Table 1. Fractional coordinates and equivalent isotropic temperature factors $\left(\AA^{2}\right)$ in $\mathrm{TlV}_{3} \mathrm{O}_{8}$ (e.s.d.'s in parentheses)

	$B_{\text {eq }}=\frac{4}{3} \sum_{i} \sum_{j} b_{i j}\left(\mathbf{a}_{i} \cdot \mathbf{a}_{j}\right)$ (Hamilton, 1959).				
	Site	x	y	z	$B_{\text {eq }}$
Tl(1)	2(e)	0.05573 (4)	0.2500	0.94825 (7)	$2 \cdot 32$ (1)
V(1)	2(e)	0.5755 (1)	$0 \cdot 2500$	0.9174 (2)	$0 \cdot 65$ (2)
V(2)	$4(f)$	0.6870 (1)	0.0540 (1)	0.4375 (1)	0.68 (1)
$\mathrm{O}(1)$	2(e)	0.4305 (6)	0.2500	0.1207 (11)	1.3 (1)
O(2)	2(e)	0.7598 (5)	0.2500	0.5915 (10)	0.77 (9)
O(3)	$4(f)$	0.5056 (3)	0.0863 (3)	0.6874 (6)	0.85 (7)
$\mathrm{O}(4)$	4(f)	$0 \cdot 1664$ (5)	0.0664 (4)	0.4340 (7)	1.43 (9)
$\mathrm{O}(5)$	$4(0)$	0.7377 (4)	0.0996 (3)	$0 \cdot 1146$ (5)	$0 \cdot 84$ (6)

Table 2. Selected bond lengths (\AA) in $\mathrm{TlV}_{3} \mathrm{O}_{8}$ (e.s.d.'s in parentheses)
The Roman numerals as superscripts indicate that the atom is in a unit cell, the relationship of which to the primary unit cell is given by: (i) $x, \frac{1}{2}-y, z$; (ii) $-x,-y,-z$; (iii) $-x, \frac{1}{2}+y,-z$; the a superscript indicates the translation $(0,0,1)$.

O(3)	O(2)	2.501 (4)	T1(1)	$\mathrm{O}\left(1^{\text {iii) }}\right.$)	2.946 (5)
$\mathrm{O}\left(5^{\text {i }}\right.$)	O(5)	2.529 (4)	T1(1)	$\mathrm{O}\left(2^{\text {iii) }}\right.$)	2.748 (4)
$\mathrm{O}\left(3^{\text {iii) }}\right.$	O(3)	$2 \cdot 362$ (5)	T1(1)	$\mathrm{O}\left(4^{\text {iii) }}\right)$	2.924 (3)
$\mathrm{O}\left(5^{\text {iii) }}\right.$	O(3)	2.729 (4)	T1(1)	$\mathrm{O}\left(4^{\text {iiia }}\right)$	$3 \cdot 198$ (3)
O(5)	$\mathrm{O}(2)$	2.686 (4)	Tl(1)	$\mathrm{O}\left(4^{\text {i }}\right.$)	$3 \cdot 602$ (3)
$\mathrm{O}(5)$	$\mathrm{O}(3)$	2.638 (4)	Tl(1)	$\mathrm{O}\left(4^{\text {iia }}\right.$)	2.924 (3)
$\mathrm{O}\left(4^{\text {iji }}\right.$)	O(2)	2.732 (7)	Tl(1)	$\mathrm{O}\left(4^{\text {ii }}\right)$	$3 \cdot 198$ (3)
$\mathrm{O}\left(4^{\text {iii) }}\right.$	O(5)	2.685 (7)	T1(1)	$\mathrm{O}\left(5^{\text {iii) }}\right.$)	$2 \cdot 980$ (3)
$\mathrm{O}(1)$	O(3)	$2 \cdot 685$ (5)	Tl(1)	$\mathrm{O}\left(5^{\text {i }}\right.$)	3.387 (3)
$\mathrm{O}\left(1^{\text {i }}\right.$)	O(5)	2.708 (5)	Tl(1)	$\mathrm{O}\left(5^{\text {i }}\right.$)	2.980 (3)
$\mathrm{O}\left(4^{\text {i }}\right.$)	$\mathrm{O}(3)$	2.980 (7)	Tl(1)	O(5)	3.387 (3)
$\mathrm{O}\left(4^{\text {iii }}\right.$)	$\mathrm{O}(4)$	$2 \cdot 962$ (7)	Tl(1)	$\mathrm{O}(4)$	$3 \cdot 602$ (3)
$\mathrm{O}(4)$	O(3)	$2 \cdot 800$ (4)			
V(1)	O(1)	1.601 (5)	V(2)	O(2)	1.881 (2)
$V(1)$	O(2)	2.287 (4)	V (2)	O(3)	2.005 (3)
$V(1)$	O(3)	1.837 (3)	V(2)	O(5)	1.746 (3)
$V(1)$	O(5)	1.971 (3)	V(2)	$\mathrm{O}\left(4^{\text {ii) }}\right.$)	1.605 (3)
$V(1)$	$\mathrm{O}\left(5^{\text {i }}\right.$)	1.967 (3)	V(2)	$\mathrm{O}\left(3^{\text {ii) }}\right.$	1.955 (3)
V(1)	$\mathrm{O}\left(3^{\text {i }}\right.$)	1.837 (3)			

$\mathrm{V}\left(1^{\text {iii }}\right.$	$\mathrm{V}(1)$	$4.474(4)$
$\mathrm{V}\left(2^{\mathrm{iii}}\right)$	$\mathrm{V}(1)$	$3.612(8)$
$\mathrm{V}\left(2^{\mathrm{i}}\right)$	$\mathrm{V}(1)$	$3 \cdot 112(10)$
$\mathrm{V}\left(2^{\mathrm{i}}\right)$	$\mathrm{V}(1)$	$3.612(8)$

$\mathrm{V}\left(2^{i i}\right) \quad \mathrm{V}(1) \quad 3 \cdot 612(8)$

Fig. 1. Perspective view of a layer of $\mathrm{TlV}_{3} \mathrm{O}_{8}$ along the c axis. $\mathrm{V}(1) \mathrm{O}_{6}$ octahedra are hatched; the short distance $\mathrm{O}\left(3^{\mathrm{ii}}\right)-\mathrm{O}(3)$, $2.362 \AA$, corresponds to a common edge shared by two $\mathrm{V}(2) \mathrm{O}_{5}$ square pyramids.

References

Brown, I. D. \& Shannon, R. D. (1973). Acta Cryst. A29, 266-282.
Ganne, M., Piffard, Y. \& Tournoux, M. (1974). Can. J. Chem. 52, 3539-3543.

Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Howard, T. \& Evans, J. R. (1960). Z. Kristallogr. 114, 257-277.
Howard, T., Evans, J. R. \& Block, S. (1966). Inorg. Chem. 5, 1809-1814.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

Kelmers, A. D. (1961). J. Inorg. Nucl. Chem. 21, 45-48.
Sheldrick, G. M. (1976). SHELX76. A program for crystal structure determination. Univ. of Cambridge, England.
Théobald, F. R. \& Théobald, J. G. (1984). J. Phys. Chem. Solids, 45(6), 581-587.
Tudo, J. \& Jolibois, B. (1971). C. R. Acad. Sci. Sér. C, 273, 466-468.

Crystal Chemistry of cyclo-Hexaphosphates. VI. Structure of Ammonium cyclo-Hexaphosphate Tellurate Dihydrate

By M. T. Averbuch-Рouchot and A. Durif
Laboratoire de Cristallographie, associé à l'Université J. Fourier, CNRS, 166 X, 38042 Grenoble CEDEX, France

(Received 10 March 1989; accepted 19 May 1989)

Abstract

NH}_{4}\right)_{6} \mathrm{P}_{6} \mathrm{O}_{18} \cdot \mathrm{Te}(\mathrm{OH})_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}, M_{r}=847 \cdot 73\), triclinic, $P \overline{1}, \quad a=9.899$ (4),$\quad b=11.042$ (7), $\quad c=$ 7.632 (9) $\AA, \quad \alpha=109.53$ (6),,$\quad \beta=106.74$ (6), $\quad \gamma=$ $100 \cdot 91(4)^{\circ}, \quad V=714 \cdot 2 \AA^{3}, \quad Z=1, \quad D_{x}=$ $1.971 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Ag} \mathrm{K} \mathrm{\overline{ } \mathrm{\alpha})}=0.5608 \AA, \quad \mu=$ $0.790 \mathrm{~mm}^{-1}, \quad F(000)=426, \quad T=294 \mathrm{~K}$, final $R=$ 0.018 for 6013 observed reflections. Almost regular $\mathrm{Te}(\mathrm{OH})_{6}$ octahedra and slightly distorted $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anions alternate in planes $z=0$. These planes are interconnected by the ammonium groups and the water molecules through a three-dimensional network of hydrogen bonds. The water molecules are statistically located on two general positions. The hydrogen-bond scheme is described.

Introduction. Addition compounds between telluric acid and water-soluble phosphates have been extensively investigated by the authors. These adducts have been observed for almost all types of phosphates, condensed or not. A good review of the present state of this field has been recently reported by Boudjada (1985).
The title compound is the first example of a cyclo-hexaphosphate-tellurate.

Experimental. Crystals of the title compound can be prepared by slow evaporation at room temperature of an aqueous solution of telluric acid and ammonium cyclo-hexaphosphate with a stoichiometric ratio $\mathrm{P} / \mathrm{Te}=6$. Crystals of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{P}_{6} \mathrm{O}_{18} . \mathrm{Te}(\mathrm{OH})_{6}$.$2 \mathrm{H}_{2} \mathrm{O}$ appear as elongated monoclinic prisms.
Crystal size: $0.24 \times 0.24 \times 0.24 \mathrm{~mm}$. Density not measured. Nonius CAD-4 diffractometer, graphite monochromator. 24 reflections ($11.0<\theta<15.0^{\circ}$) for refining unit-cell dimensions. ω scan, scan width: $1 \cdot 20^{\circ}$, scan speed variable between 0.02 and 0.06°
s^{-1}, total background measuring time: between 30 and 10 s. 9148 reflections collected, $3<\theta<35^{\circ}, \pm h$, $\pm k, l, h_{\max }=16, k_{\max }=20, l_{\max }=13$. Two orientation (632 and 371) and two intensity (361 and 633) control reflections without any significant variation. 8551 reflections obtained after averaging Friedel pairs ($R_{\text {int }}=0.01$). Lorentz and polarization corrections, no absorption correction. Structure solved by direct methods (MULTAN77, Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1977). H atoms located by difference-Fourier syntheses. Anisotropic full-matrix least-squares refinements (on F), isotropic for H atoms. Unit weights. Final refinement cycles with 6013 reflections ($I>9 \sigma_{I}$). Final $R=0.018(w R$ $=0.023$), $S=0.498$, max. $\Delta / \sigma=0.05$. Max. peak height in the final difference-Fourier synthesis: $0.684 \mathrm{e} \AA^{-3}$. No extinction correction. For the total set of 8551 reflections the R value is 0.031 . Scattering factors for neutral atoms and $f^{\prime}, f^{\prime \prime}$ from International Tables for X-ray Crystallography (1974). Enraf-Nonius (1977) SDP used for all calculations. Computer used: MicroVAXII.

Discussion. Table 1 reports the final atomic coordinates.* The $\mathrm{Te}(\mathrm{OH})_{6}$ group is located around the inversion center at $0,0,0$. As usually observed in this kind of compound it corresponds to an almost regular octahedron with $\mathrm{O}-\mathrm{Te}-\mathrm{O}$ angles ranging from 87.88 to 89.80° and $\mathrm{Te}-\mathrm{O}$ distances varying from 1.877 to $1.931 \AA$.

[^1]
[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52260 (15 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52257 (50 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

